
Appendix A

Big-Oh and Little-Oh

The notation Big-Oh and Little-Oh is used to compare the relative values of two functions,
f(x) and g(x), as x approaches ∞, or 0, depending on which of these two cases is being
considered. We will suppose that g is positive-valued and that x > 0.

A.1 Big-Oh

The case x → ∞

f is O(g) if there exist constants A > 0 and x0 > 0 such that
|f(x)|

g(x)
< A for all x > x0 .

The case x → 0

f is O(g) if there exist constants A > 0 and x0 > 0 such that
|f(x)|

g(x)
< A for all x < x0 .

Example A1

The function f(x) = 3x3 + 4x2 is O(x3) as x → ∞. (Here g(x) = x3.) We have that

|f(x)|

g(x)
=

3x3 + 4x2

x3
= 3 +

4

x
.

There exist (infinitely) many pairs A, x0 > 0 that show that f is O(x3), for example,
|f(x)|
g(x)

< 4.1 for all x > 40 .

Example A2

The function f(x) = 3x3 + 4x2 is O(x2) as x → 0. Here

|f(x)|

g(x)
=

3x3 + 4x2

x2
= 3x + 4 ,

and, for example, |f(x)|
g(x)

< 4.3 for all x < 0.1 .
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A.2 Little-Oh

The case x → ∞ : f is o(g) if lim
x→∞

|f(x)|

g(x)
= 0 .

The case x → 0 : f is o(g) if lim
x→0

|f(x)|

g(x)
= 0 .

Example A3

The function f(x) = 3x3 + 4x2 is o(x4) as x → ∞ because

lim
x→∞

|f(x)|

g(x)
= lim

x→∞

3x3 + 4x2

x4
= lim

x→∞

(

3

x2
+

4

x

)

= 0 .

Example A4

The function f(x) = 3x3 + 4x2 is o(x) as x → 0 because

lim
x→0

|f(x)|

g(x)
= lim

x→0

3x3 + 4x2

x
= lim

x→0
(3x2 + 4x) = 0 .

Example A5

The function f(x) = 3x2 + 4x is o(1) as x → 0 because

lim
x→0

|f(x)|

g(x)
= lim

x→0

3x2 + 4x

1
= lim

x→0
(3x2 + 4x) = 0 .



Appendix B

Taylor expansions

This appendix gives a brief justification of the expansions used in Section 1.3.2. Details
can be found in standard calculus texts, for example, Courant R. and John F. (1965)
Introduction to Calculus and Analysis, Wiley, New York.

Suppose that the function f has n + 1 continuous derivatives in the interval [a, a + h], if
h > 0, or [a + h, a], if h < 0. The n-term Taylor approximation for f(a + h) is given by

f(a + h) = f(a) +
h

1!
f (1)(a) +

h2

2!
f (2)(a) + · · · +

hn

n!
f (n)(a) + Rn(a, h), (B.1)

where f (r)(a) denotes the r-th derivative of f at the point a, and Rn(a, h), called the
remainder, is the error in approximating f(a+h) by the n-degree polynomial (in h) on the
right-hand side.

The remainder can be represented in different forms. The following result is based on a
version of the Lagrange form1: If there exists a positive constant M , such that |f (n+1)(t)| ≤
M for all t ∈ [a, a + h] (or alternatively t ∈ [a + h, a], in the case h < 0) then

|Rn(a, h)| ≤
|h|n+1

(n + 1)!
M .

Thus, regarded as a function of n, for fixed a and h, the term |Rn(a, h)| becomes small as n

increases. Alternatively, regarded as a function of h, for fixed a and n, |Rn(a, h)| becomes
small as h → 0. In the notation explained in Appendix A, Rn(a, h) is o(hn) as h → 0.

Example B1

This example relates to the material in Section 1.3.2. Specifically, we wish to investigate
the behaviour of a two-term Taylor approximation to f(x − zh) as h becomes small, for
fixed values x and z. We assume that f is three times differentiable, and that, in some

1After the Italian-French mathematician Joseph-Louis Lagrange (1736-1813).
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closed interval containing x, the absolute value of it’s third derivative is bounded by some
positive constant M . Applying the expansion (B.1) yields

f(x − hz) = f(x) +
(−hz)

1!
f ′(x) +

(−hz)2

2!
f ′′(x) + R2(x,−zh),

where |R2(x,−zh)| ≤ |zh|3

3!
M . Thus as, h becomes small, we have that

f(x − hz) = f(x) − hzf ′(x) +
h2z2

2
f ′′(x) + o(h2)

Similarly it follows that

f(x − hz) = f(x) − hzf ′(x) + o(h)

and that
f(x − hz) = f(x) + o(1)


